
Thermoconvective instabilities in a narrow horizontal air-®lled
annulus

Gilles Desrayaud b, Guy Lauriat a,*, Pierre Cadiou a

a Universit�e de Marne-la-Vall�ee, Cit�e Descartes, Bât. Lavoisier, Champs-sur-Marne, 77454 Marne-la-Vall�ee Cedex 2, France
b INSSET, Universit�e de Picardie, 48 rue Raspail, B.P. 422, 02109 Saint-Quentin, France

Received 30 October 1998; accepted 3 May 1999

Abstract

This paper reports a numerical investigation of natural convection ¯ows between horizontal concentric annuli with the inner

cylinder isothermally heated. Thermal and hydrodynamic instabilities for air-®lled annuli of small radius ratios are discussed. At

fairly low Rayleigh numbers (Ra6 3000), thermal instabilities develop at the upper part of the annulus as steady cells. The results

show the existence of an imperfect bifurcation, which could explain the discrepancies between the solutions reported previously in

the literature. Locations of the bifurcation points are determined numerically for various radius ratios. At higher Rayleigh numbers,

unsteady hydrodynamic instabilities are demonstrated in the vertical portions of an annulus with a radius ratio R� 1.14. It is also

shown that a reverse transition from multicellular to unicellular base ¯ow patterns occurs when further increasing the Rayleigh

number. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Natural convection between horizontal isothermal con-
centric cylinders has been widely studied theoretically and
experimentally over the past three decades because of the im-
portance of this subject in industrial problems, such as trans-
mission cable cooling systems, latent energy storage systems,
nuclear reactor design, etc. From a theoretical point of view,
natural convection in horizontal annuli has been one of the
focuses of research in heat transfer on account of the large
variety of ¯ow structures encountered in this con®guration
according to the value of the radius ratio. For example, two-
dimensional Rayleigh±B�enard like solutions are shown at the
top annulus region for small annular gap while oscillating
thermal plumes are seen to develop for large radius ratios. The
computations carried out in the present study deal with the
small radius ratio con®guration for which large discrepancies
are reported in the literature, especially about the ¯ow struc-
ture at the low Rayleigh numbers just above the ®rst bifurca-
tion point.
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Notation

g acceleration due to gravity
Gr Grashof number (Gr�Ra/Pr)
e0 gap width �e0 � r0o ÿ r0i�
Pr Prandtl number �Pr � m=a�
r dimensionless radial coordinate �r � r0=e0�
ri dimensionless inner cylinder radius

�ri � r0i=e0�
ro dimensionless outer cylinder radius

�ro � r0o=e0�
R radius ratio �R � r0o=r0i�
Ra Rayleigh number Ra � g b e03DT=am�
T dimensionless time �t � a t0=e02�
Tm mean temperature �Tm � 0:5�Ti � To��
u, v radial and azimutal velocity

Greek
a thermal di�usivity
b coe�cient of thermal expansion
m kinematic viscosity
h angular coordinate measured from

downward vertical
H dimensionless temperature (H� (TÿTm)/

DT)
DT temperature di�erence (DT�TiÿTo)

Superscript
0 dimensional variables

Subscripts
i inner cylinder
o outer cylinder
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From their experimental work, Powe et al. (1969) depicted
¯ow regime transitions for air-®lled annuli and were the ®rst to
present a chart for the prediction of the nature of the ¯ow
according to the Rayleigh number and radius ratio. This chart
shows the limit between the base ¯ow and the two- or three-
dimensional ¯ow patterns, stationary or oscillatory, which
follow the named pseudo-conduction regime. This basic ¯ow
®eld consists of two crescent-shaped cells, symmetrical with
respect to the vertical plane containing the axes of the cylin-
ders. In each of the two annular half spaces, the ¯uid follows
an upward stream along the hot inner cylinder and ®nally
reaches the top of the annular space. The ¯uid goes then
downwards along the cold cylinder and reaches the almost
quiescent bottom portion of the annulus. At low Rayleigh
number, conduction is the major mode of heat transfer be-
tween the hot and cold cylinders. As the Rayleigh number is
increased, the center of rotation of the main cells moves up-
ward and a thermal plume starts to form at the upper part of
the annulus with an impingement region at the outer cylinder.
The shape of the isotherms shows that the largest part of the
heat convected within the annulus is extracted from the lower
part of the inner cylinder. At small radius ratios (R6 1.20), the
¯ow becomes multicellular while remaining two-dimensional
when increasing the Rayleigh number. In the thermally un-
stable regime, two-dimensional cells aligned along the axis of
the cylinders form at the top of the annulus, just between the
two main cells of the base ¯ow. For higher radius ratios
(1.246R6 1.71), a three-dimensional ¯ow develops after the
®rst bifurcation, a spiral motion being superimposed on the
base ¯ow which is still in the shape of a crescent. A vertical cut
in the axial direction shows a ¯ow structure of Rayleigh±
B�enard type at the top of annular cavity. Lastly, an oscillating
three-dimensional thermal plume is observed in the higher part
of annular space when R P 2.

In the case of an annular cavity of small radius ratio
(R6 1.20), the discrepancies found between the results re-
ported in the literature are both on the ¯ow patterns and
critical Rayleigh numbers corresponding to the bifurcation
points. Powe et al. (1969) showed experimentally that cells
form within the upper part of the annulus when
4100<Ra<4900. This two-dimensional structure of the ¯ow
was then con®rmed numerically by Powe et al. (1971), Rao et al.
(1985), Fant et al. (1989) and Kim and Ro (1994). Rao et al.
(1985) simulated only one stationary multicellular ¯ow having
four secondary cells at the annulus top region for R� 1.175
and Ra� 4000, although several initial conditions were used.
They also showed that the ¯ow comes to oscillate at moderate
Rayleigh numbers (Ra6 50 000) in such a way that the top
cells periodically swing right and left. Fant et al. (1989) cal-
culated a multicellular ¯ow with two secondary cells for
R� 1.20 and Ra P 2841 and evidenced a hysteresis phenom-
enon in the range 25706Ra6 2841. Since the two cells ob-
tained were counter-rotating, a downward velocity in the
vertical plane of symmetry and an inverted thermal plume
resulted at the top annulus region. For the same radius ratio,
Kim and Ro (1994) calculated two stable ¯ow structures
characterized by di�erent numbers of secondary cells (2 or 4).
These two solutions were calculated using di�erent initial
conditions. Two critical Rayleigh numbers are reported in Kim
and Ro (1994), one for each branch of the bifurcation phe-
nomenon. For R� 20:5, Cheddadi et al. (1992) obtained two
secondary cells but at Ra P 3250 only, and by using a per-
turbed temperature distribution as an initial condition. With-
out initial disturbance, the base-¯ow pattern was found to be
stable up to Ra� 7000. Moreover, they did not report hys-
teresis phenomena. Finally, the recent numerical study of
Barbosa-Mota and Saatdjian (1994) dealing with a porous-
®lled annulus showed the existence of a critical radius ratio

(R� 1.7) beyond which hysteresis phenomena can exist. Their
results show also that the critical Darcy-modi®ed Rayleigh
number tends towards 4p2 when the radius ratio tends towards
unity. This result supports the analogy between natural con-
vection within narrow horizontal annuli and horizontal layers
heated from below.

To our best knowledge Fant et al. (1989, 1990) were the
only ones to describe the appearance of longitudinal rolls
within the main crescent-shaped cells, but in the limiting case
of zero Prandtl-number ¯uids. These instabilities are hydro-
dynamic in nature. It was shown that the number of cells is a
strong function of the radius ratio. For example, four or ®ve
cells form in each vertical part of the annulus beyond a critical
Rayleigh number at R� 1.09, the cell number oscillating be-
tween 4 and 5 during one period.

In the present study, either 2D steady or transient investi-
gations are performed to simulate natural convection within
the annuli of small radius ratio (R6 1.20). The reasons for the
above-mentioned discrepancies are explained through the
discussion of the numerical results. To show the dependence of
the ¯ow pattern on the initial condition, computations are ®rst
carried out by gradually increasing Ra from a motionless
isothermal state. Secondly, ¯ow patterns at Ra� 3000 are
obtained by starting from a motionless state with a perturbed
pure conductive temperature distribution, the next calculations
being continued by slightly decreasing Ra until the pseudo-
conduction regime is recovered. Finally, time-periodic solu-
tions are shown to appear at moderate Ra, followed by a
reverse transition to a unicellular crescent-shaped base ¯ow
when increasing further Ra.

Recently, after the work reported in this paper was com-
pleted, an investigation dealing with the same problem but at
low Prandtl numbers (Pr6 0.3) for an annulus of aspect ratio
R� 1.167 was published by Yoo (1998). He found that the
Prandtl number has a strong in¯uence upon the type of in-
stability of the conduction dominated ¯ow. For Pr6 0.2, only
hydrodynamic instabilities set in as steady or oscillatory ro-
tating cells in the vertical section of the annulus as in a vertical
slot. For Pr� 0.3, the ®rst instability is thermal in its origin
and is formed at the top of the annulus as steady counter-ro-
tating cells. When increasing the Rayleigh number, the steady
multicellulear ¯ow undergoes hydrodynamic instabilities
which consist of multiple oscillatory rotating cells in the ver-
tical section. The results obtained by Yoo (1998) for a Pr� 0.3
are consistent with those presented here.

2. Equations and numerical procedure

Fig. 1 illustrates schematically the physical problem of
natural convection within a horizontal annulus made of two
concentric isothermal cylinders. The inner cylinder of radius ri

is heated at uniform temperature Ti whereas the outer cylinder
of radius ro is at a lower temperature, To. The mathematical
formulation of the problem is written in cylindrical coordi-
nates with the origin at the center of the inner cylinder. The
angular coordinate h is measured from the vertical, positively
in the trigonometrical direction. The ¯ow is assumed to be
incompressible, laminar, Newtonian and two-dimensional.
The thermophysical properties of the ¯uid are taken at the
average temperature, Tm, except the density in the buoyancy
term which is a linear function of the temperature gradient.
The Boussinesq-approximated Navier±Stokes equations and
energy equation with negligible viscous dissipation are used to
determine the buoyancy-induced ¯ow ®eld. These equations
written in dimensionless form are given by
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r �U � 0; �1�
oU

ot
� �U � r�U � ÿrp � Pr �DU�Ra � Pr �H � j; �2�

oH
ot
� �U � r�H � DH: �3�

The problem depends on one geometrical parameter, the ra-
dius ratio R, and two dimensionless numbers, the Rayleigh
number, Ra, which is built on the spacing between cylinders,
and the Prandtl number, Pr. In the present paper, all the cal-
culations were carried out for Pr� 0.71 (air).

The boundary conditions at the inner and outer cylinders
are as follows:

r � ri and 0�6 h6 2p : u � v � 0 and H � �0:5; �4�
r � ro and 0�6 h6 2p : u � v � 0 and H � ÿ0:5: �5�
The local Nusselt number is given by

Nu�r; h� � ln R�uHÿ oH=or� r: �6�
The mean Nusselt numbers on the inner and outer cylinders
are calculated by averaging the local Nusselt number on the
area of the cylinders:

Nui � ÿ ri ln R
2p

Z 2p

0

oH
or

� �
r�ri

dh; �7�

Nuo � ÿ ro ln R
2p

Z 2p

0

oH
or

� �
r�ro

dh: �8�

At steady state, these mean Nusselt numbers should be equal.
This condition can be considered as a physical criterion for
checking the accuracy of the numerical solutions.

The governing equations were discretized using a ®nite
volume method. The SIMPLER algorithm was used to solve
the velocity±pressure coupling and a centered approximation
was employed to discretize the convective terms. All the
equations were solved in transient form with a semi-implicit
scheme for temporal integration (ADI method). The resulting
tridiagonal matrix systems were solved by using a vectorized
version of a direct matrix solver (Thomas algorithm).

On account of the results reported by Powe et al. (1971),
Cheddadi et al. (1992), Kim and Ro (1994) and Cadiou et al.

(1995) and of the numerous computations carried out in the
present study, it can be concluded that the calculation may be
made on half annulus at low Rayleigh numbers (at which the
solution is stationary and symmetrical) whereas the whole
annulus must be considered for higher Rayleigh numbers at
which oscillations of the problem variables may occur within
the ¯ow ®eld.

When calculations are carried out on a half-cavity, the
conditions of symmetry are as follows

at h � 0 and h � p ; ri6 r6 ro : v � 0 and
ou
oh
� oH

oh
� 0:

�6�
For a whole cavity, boundary conditions of periodic type were
applied at h� 0 and 2p. It consists in using the solutions cal-
culated at a previous radial sweeping as the boundary condi-
tions at the angular sweeping of the ADI procedure.

Grid re®nement studies were conducted for several radius
ratios. The results are reported in Tables 1 and 2 for R� 1.2.
The numbers of points in the radial and angular directions (on
a half-cavity) are denoted nr and nh. The values of the various
variables obtained on the same grids using a ®nite element
code (TRIO-EF developed at the French Atomic Energy
Center in Saclay by Magnaud et al., 1997) are given in
brackets. It should be noted that calculations were not made
for the ®nest grid because the CPU-time becomes prohibitively
large when running TRIO-EF on a workstation.

Comparisons between mean Nusselt numbers and local
values, i.e. the norm of the maximum velocity, are given in
Table 1 for various grid sizes at Ra� 3000. The Rayleigh
numbers corresponding to a transition from the base ¯ow to a
multicellular ¯ow are reported in Table 2. The results between
brackets are those obtained using TRIO-EF. The same mul-
ticellular patterns were obtained using both codes (Cadiou,
1997). In addition, Tables 1 and 2 show a very good agreement
between the local, average and transitional values obtained.

The result of this grid re®nement study was to select uni-
form meshes both in radial and angular directions having
19 ´ 110 nodes for half-annulus computations conducted at
low Rayleigh numbers (Ra < 5000), and 31 ´ 240 nodes for
possibly oscillating ¯ows (5000 < Ra < 50 000) at which the full
annulus was discretized. These grid systems were considered as
a good compromise between accuracy of the solutions and
determination of the bifurcation points, and CPU-time. All the

Table 1

Mean Nusselt number and maximums of the mean velocity for various

grid systems (R� 1.20, Ra� 3000, Pr� 0.71)a

nr ÿ nh 13±74 19±110 25±146 41±246

Nu 1.134 1.127 1.124 1.122

(1.109) (1.116) (1.118) (ÿ)

max
���������������
u2 � v2
p

23.37 23.86 24.03 24.06

(23.27) (23.78) (23.92) (ÿ)

a The values in parenthesis are for the ®nite element code.

Table 2

Rayleigh numbers at which multicellular structures appear (R� 1.20,

Pr� 0.71)a

nrÿ nh 19±110 25±146 35±202

Ra 1880 1915 1925

(1950) (1920) (ÿ)

a The values in parenthesis are for the ®nite element code.

Fig. 1. Flow geometry and coordinate system.
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®nite volume calculations were carried out on a CRAY C90
with a 400 M¯ops-speed on average.

It should be underlined that an accurate localization of the
thresholds of transition between unicellular and multicellular
¯ows is highly CPU-time consuming. As an example, Fig. 2
shows the time evolution of the average Nusselt number for
Ra� 2000, the initial solution being the computed stationary
solution at Ra� 1900. From time t� 1 to 5, the Nusselt
number does not vary within seven decimals. The choice of a
too weak convergence stopping criterion would have led to end
the calculations. The transition occurs at about t� 7, i.e.
14 000 iterations with a time increment Dt� 5 ´ 10ÿ4. The
abrupt changes in Nu means that the solution evolves then to a
multicellular ¯ow. Such a behavior was noticed by Rao et al.
(1985). This result shows that the use of convergence criteria,
whatever they are, when searching thresholds of ¯ow transi-
tion is inappropriate as demonstrated by Desrayaud and La-
uriat (1991). It seems better to ®x a total number of time steps,
although this procedure leads obviously to very long CPU-
times when conducting a parametric study.

3. Results and discussion

3.1. Flow patterns at low Rayleigh numbers

Natural convection ¯ows in horizontal annuli with heated
inner cylinder merge with Rayleigh±B�enard ¯ows between two
in®nite parallel plates as the radius ratio tends towards unity.
It should be noted that this limit is highly di�cult to reach
numerically with the code used in the present work owing to
the drastic increase in CPU-time as R ® 1. For the Rayleigh±
B�enard problem the ¯uid is initially at rest because the stabi-
lizing e�ect of the viscous forces is higher than the destabilizing
e�ect of buoyancy. For a ¯uid layer of in®nite horizontal ex-
tension, this state is modi®ed above Rac� 1708 and the mul-
ticellular ¯ow patterns and types of bifurcations occurring then
were considered in a number of works (see for example Berg�e
et al., 1984). In the ®nite box con®guration, the ¯ow pattern
evolves towards two possible stable states through a pitchfork
bifurcation. Longitudinal cells of horizontal axis are formed
between the two horizontal plates with an equal probability of
rotating in clockwise direction or in the opposite. This feature
evidences that there exist two symmetrical stable branches of
bifurcation. However, it should be noted that while one of the
two bifurcation branches is naturally followed when increasing
progressively the Rayleigh number, the other branch cannot be
reached in numerical experiments without superimposing small
perturbations to the pure conduction temperature ®eld used as
initial condition.

For a horizontal air-®lled annulus, the curvature of the
surfaces (or radius ratio) can be considered as an external
perturbation that controls the secondary cell generation. In-
deed, curvature has a strong e�ect on the two-dimensional
unicellular base ¯ow, named the pseudo-conduction regime,
which develops within each half of the annulus at low Rayleigh
number with an upward velocity in the vertical center plane.
This ¯ow pattern exists as soon as the temperatures of the
cylinders di�er. It should be noted that a temperature gradient
co-linear and opposite to the gravity vector exists at h� p and
temperature gradients perpendicular to gravity exist at h� p/2
and 3p/2. Therefore, onset of the Rayleigh±B�enard type ¯ow is
possible at h� p while a ¯uid motion is created around h� p/2
and 3p/2, whatever the temperature di�erence. One can thus
expect to observe thermal instabilities of the Rayleigh±B�enard
type at the top of the annulus provided that the radius ratio is
small enough, and also hydrodynamic instabilities like in
vertical slots ®lled with low Prandtl number ¯uids (Lee and
Korpela, 1983).

In the present study, it was necessary to work with two
procedures similar to those used for the Rayleigh±B�enard
problem in order to follow the bifurcation branches. These
branches may be displayed through plots of variations of ®eld
variables as a function of Ra or variations of the Nusselt
number. The ®rst procedure consisted in gradually increasing
the Rayleigh number, an isothermal and motionless ¯uid being
used as the initial condition when solving the governing
equations at the lowest Rayleigh number considered. The
continuous branch was then obtained from increases in Ra and
the transition from the unicellular base ¯ow to a multicellular
¯ow occurs at a Rayleigh number named in what follows
transitional Rayleigh number. The second branch can only be
found by disturbing the ¯ow ®eld, i.e. either by superimposing
thermal perturbations to an initial state of pure conduction
(Cheddadi et al., 1992), or by abruptly increasing the Rayleigh
number when starting from an isothermal motionless ¯uid.
However, it should be noted that an abrupt increase in Ra
produces a solution located on the second branch only if the
Ra-value is far from the critical value and for large enough
radius ratios (R P 1.20). On account of the small radius ratios
investigated in the present study, it was necessary to use a
perturbed pure conduction solution together with an abrupt
change in Ra in order to reach the second branch of bifurca-
tion. Thus, this branch was followed by decreasing Ra and
appears to be the isolated branch of an imperfect bifurcation.
The lowest value of the Rayleigh number found on this iso-
lated branch is called in the following the critical Rayleigh
number.

3.1.1. Case R� 1.08
Since our numerical simulations were aimed at simulating

secondary cells, the results are ®rst discussed for R� 1.08 be-
cause a large number of thermal cells may develop at the upper
part of the annulus. The onset of secondary cells is indeed
inhibited when R is far from unity. Therefore, the study of the
process of formation or merging of secondary cells is easier
when the computations are carried out for annuli of small
radius ratios. However, all of the isothermal patterns and
streamlines shown in the present paper were plotted for an
annulus with R� 2, whatever the current value of R is (except
in Fig. 6), in order to improve the graphical representations.

When using the ®rst procedure, the results showed that the
pseudo-conduction regime persisted up to Ra� 1755 (Fig. 3a).
Around Ra� 1785, the two crescent-shaped cells of the base
¯ow divided at the top the annulus and onset of a small sec-
ondary cell within each half-annulus is evidenced (Fig. 3b).
These cells are co-rotating with the main cells. When following
the continuous branch, the velocity at the symmetry plane

Fig. 2. Time evolution of the mean Nusselt numbers at Ra� 2000,

R� 1.20 and Pr� 0.71 (initial solution Ra� 1900).
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(h� p) is upward. In what follows, the branch with the upward
velocity at h� p will be thus named U-branch. The top cells
are di�cult to detect from the isothermal patterns and
streamlines at Ra-values very close to the threshold of transi-
tion. On the other hand, plots of the local Nusselt number
allow to easily detect their onset provided that a stationary
multicellular state exists. Fig. 4 shows clearly the e�ect of the
top cell on the local Nusselt number distributions at
Ra� 1785. It should be noted that to simulate such a ¯ow ®eld
requires a large integration time. Fig. 3c (Ra� 2000) was
prepared to exemplify the beginning of a cycle of formation of
the thermal cells. At the top of the main cell, a secondary cell is
almost formed through a separation process from the crescent
base ¯ow. When separation is ended this cell is co-rotating
with the base ¯ow. It is rather surprising to observe the exis-
tence of a ¯ow structure having co-rotating cells. Within the
inter-cells region, large shear stresses occur. As a result, this
¯ow structure cannot persist and the emergence of an addi-
tional cell is observed when increasing Ra: a stagnation zone
appears as the top cell strengthens and a counter-rotating cell
starts to rise as soon as the extent of this stagnation zone is
large enough. For example, at Ra� 3000 (Fig. 3d) the cell
which was forming at Ra� 2000 (Fig. 3c) is fully separated
from the main cell and a counter-rotating cell (plotted in da-
shed lines) has appeared between these cells. Further increases
in Ra lead to a third separation of the main cell.

From the computations carried out in this work for annuli
of small radius ratios (1.046R6 1.20), it has been found that
the cycle of formation of the cells systematically proceeds as
follows: when all of the cells are counter-rotating, a new cell
rises by separation from the base ¯ow. This cell is co-rotating
with the main cell. By increasing Ra the extent of the stagna-
tion zone between these two co-rotating cells makes the onset

of a counter-rotating cell possible. Then the cycle starts again
until the curvature of the annulus prevents the formation of an
additional cell. This is why the number of cells decreases when
the radius ratio increases.

It should be noted that the above-mentioned process of cell
formation is inverted when decreasing Ra. For the radius ratio
considered here, the transition towards the unicellular base
¯ow (pseudo-conduction regime) occurs at almost the same
Rayleigh number as the transitional Ra calculated by in-
creasing Ra.

By starting the computations from a motionless and iso-
thermal state (H�ÿ0.5) as an initial condition, an abrupt
change in Rayleigh number up to Ra� 3000 was not enough
to simulate a solution located on the isolated branch for
R� 1.08. Therefore, it was necessary to start the computations
by using a theoretical model consisting in a motionless ¯uid in
which the temperature ®eld was that of a pure conduction
solution, disturbed such as (Cheddadi et al., 1992)

H�r; h� � 0:5ÿ 1

ln R
ln �R� ÿ 1� r � 1�

� a sin
p

ln R
ln �R�

h
ÿ 1� r � 1�

i
cos gh;

where a is the ampli®cation factor and g is the wave number.
When choosing a� 0.02 and g� 16, the isolated branch of
bifurcation is then reached at Ra� 3000. The downward ve-
locity along the vertical axis in the upper part of the annulus
characterizes this branch (uppermost cell plotted in dashed
lines in Fig. 5a). Therefore, the branch with a downward ve-
locity at h� p will be named D-branch. Three counter-rotating
top cells develop then within each half-annulus. It can also be
seen that a fourth cell is almost detached from the base ¯ow
and would give rise to a cell co-rotating with the main cell at a
slightly higher Ra. On the other hand, when the Rayleigh
number is decreased to Ra� 1980 (Fig. 5b), this cell merges
and the base ¯ow extends towards the top region of the an-
nulus. Consequently, the ¯ow rate within the secondary cell
adjacent to the base ¯ow is damped out until its ultimate
disappearance. The result is that the cell, which becomes the
nearest to the base ¯ow, is then co-rotating. Further decrease
in Ra leads to a breaking-up of one more cell through a con-
tinuously crunching process by the main cell. It should be
noted that the velocity at the top of the symmetry plane (h� p)
is downward whatever Ra is. Finally, the ¯ow ®eld exhibits a
monocellular pattern for Ra within the range 1785 < Ra < 1755
(Fig. 5d).

On the D-branch, the mechanism of formation (increase in
Ra) or merging (decrease in Ra) of the cells within the upper

Fig. 4. Angular variations of the mean Nusselt numbers on the iso-

thermal cylinders (R� 1.08, Pr� 0.71).

Fig. 5. Streamlines for the stationary regime obtained through

decreases in Ra (R� 1.08, Pr� 0.71).

Fig. 3. Streamlines for the stationary regime obtained through regular

increases in Ra (R� 1.08, Pr� 0.71).
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part of the annulus is similar to the one that has been described
for the U-branch. On the other hand, the velocity in the
symmetry plane at the annulus top region is upward for so-
lutions located on the U-branch and downward for those on
the D-branch. Fig. 6 which shows the isotherms at Ra� 3000
exempli®es this di�erence. As can be seen, a thermal plume is
formed at the vertical plane of symmetry (Fig. 6b) for the
solution on the U-branch while a reversed thermal plume de-
velops if the solution is on the D-branch (Fig. 6d). This feature
characterizes also the two branches of the bifurcation. Fant
et al. (1989) and Yoo (1998) had already reported the existence
of a thermal plume reversed or not but did not give any reason
for it. Only one branch (the U-branch in the present case) can
be followed continuously, i.e. by increasing or decreasing Ra,
through the threshold at which onset of multicellular ¯ow
occurs at the annulus top. The other branch shows a discon-
tinuity. The D-branch can indeed be followed only by
decreasing Ra down to a critical value below which the pseu-
do-conductive regime is obtained anew. It seems that the
pitchfork bifurcation found in the Rayleigh±B�enard problem
(i.e. R� 1) degenerates into an imperfect bifurcation under the
e�ect of the curvature which breaks the z ®ÿz symmetry of
the velocity ®eld. This dissymmetry breaks the Rayleigh±
B�enard solutions which bifurcate at the double point of the
pitchfork bifurcation into two supercritical isolated solutions.

These solutions correspond to the U- and D-branches. Fur-
thermore, the hysteresis phenomenon, which is one of the main
feature of a transcritical bifurcation (an another degeneracy of
the pitchfork bifurcation), has never been detected whatever
the radius ratio was. Calculations carried out for higher radius
ratios (up to R� 1.20 at which the threshold is within the in-
terval [1900,1920]) did not allow us to show evidence of a
hysteresis phenomenon. Fig. 7 exempli®es this ®nding by
showing the variations of the radial velocity at h� p and at the
middle of the annulus gap as a function of Ra. The continuous
and the isolated branches of the imperfect bifurcation are
drawn. The transitional Ra for the onset of multicellular ¯ow
at the top of the annulus ranges from 1720 to 1750 when de-
termined by increasing Ra. By decreasing Ra, the critical point
of bifurcation was found in the same range, i.e.
17506Rac6 1720. On the D-branch, the evolution of the ve-
locity amplitude at point (r� 0.5(ri + ro), h� p) follows a law
of the type {(RaÿRac)/Rac}

0:5 while no precise law was found
on the U-branch. These results corroborate the existence of an
imperfect bifurcation.

3.1.2. Transitional values and correlation
In the present study, ®ve radius ratios were considered:

R� 1.04, 1.08, 1.12, 1.16 and 1.20. From the purely numerical
determination of the transitional Rayleigh numbers, the fol-
lowing correlation giving RaT as a function of R was obtained
using a linear regression procedure

RaT�R� � 552� 1150 R: �10�
The maximum deviation of this correlation from the numerical
data is within 0.6% and it is in very good agreement with the
results reported by Cadiou et al. (1995) by using a ®nite ele-
ment method. The critical value obtained by extrapolation for
R� 1 is very close to Rac� 1708. The critical Ra given by Kim
and Ro (1994) for 1.26R6 1.6 are reported in Table 3. It can
be seen that the relative errors between their values and those
based on Eq. (10) are within 2%, even for the highest radius
ratio at which extrapolation was used. It should also be noted
that the present transitional values are also in good agreement
with those reported in the ¯ow regime chart of Powe et al.
(1969). In the present work, computations were not carried out
for radius ratios greater than 1.20 since a transition to 3D-
¯ows has been revealed by experiments (Powe et al., 1969).

Fig. 8 displays the variations of the mean Nusselt numbers
on the two branches of bifurcation as a function of Ra for the
®ve radius ratios considered. For each of the radius ratios,
the number of cells increases with Ra. At a ®xed value of Ra,
the number of cells increases as R decreases. For example,
eight cells are simulated for R� 1.04 at Ra� 3000 while they
are only one or two cells for R� 1.16 and 1.20 according to the
location of the solution on the branches. The number of sec-
ondary cells observed on the two branches at Ra� 3000 is
reported between brackets in Fig. 8 for the various radius ra-
tios considered. The Ra-ranges at which the pseudo-conduc-
tion regime was found are plotted using full lines. Obviously,
the transitional Ra increases with R. The variations of Nu
against Ra obtained through increases in Ra beyond the

Fig. 6. Velocity ®eld and isotherms on both branches of the bifurca-

tion at Ra� 3000: U-branch (a,b), D-branch (c,d) (R� 1.08,

Pr� 0.71).

Fig. 7. Bifurcation map of the radial component of velocity at

r� 0.5(ri + ro) and h� p (R� 1.08, Pr� 0.71).

Table 3

Comparison of transitional Rayleigh numbers

R 1 1.04 1.08 1,12 1.16 1.20
���
2
p

1.60

Present results 1735 1770 1810 1870 1915 ÿ ÿ
Kim and Ro

(1994)

ÿ ÿ ÿ ÿ 1920 2150 2355

Correlation (10) 1702 1728 1774 1820 1866 1912 2158 2372
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threshold are plotted using dashed lines. For R6 1.16, these
Nu-values are located on the U-branch while they are on the
D-branch for R� 1.20. A possible reason for this change is
that this radius ratio is close to the threshold between 2D and
3D ¯ows which can develop after the ®rst transition, as it has
been experimentally shown by Powe et al. (1969). The isolated
Nu-curves obtained by using the second procedure (abrupt
increase in Ra from a perturbed pseudo-conduction solution
up to 3000) are plotted using doted lines. It can be seen that the
Nu-values calculated are smaller or higher than those obtained
with the ®rst procedure, the branch where the Nusselt number
is the highest being for the largest number of cells. Increase in
the cell number leads indeed to an increase of the convective
heat transfer between the cylinders. It is also seen that the two
branches deviate from each other all the more since R is large
because there are only one or two cells for R P 1.16.

At Ra� 3000 all the cells are counter-rotating, except for
R� 1.04. At this radius ratio, seven cells are counter-rotating
and one cell is co-rotating with the base ¯ow when the solution
is on the D-branch. The eight cells are counter-rotating on the
U-branch. It should be noted that Fig. 2 shown in Kim and
Ro (1994) and the present Fig. 8 for R� 1.20 are very similar.
However, Kim and Ro found Rac� 2330 instead of 1915. At
slightly higher Ra, they obtained an abrupt transition towards
a multicellular ¯ow having four secondary cells (two in each
half-annulus) instead of the two cells that we have found just
above the transitional Ra. When decreasing Ra and by start-

ing their computations from the solution calculated at
Ra� 3000, they obtained a second critical Rayleigh number
equal to 1935, i.e. very near to the one determined in the
present work (Table 3). Nevertheless, the change in the slopes
of the branches shown in Fig. 2 of Kim and Ro (1994) at
Ra� 1935 suggests a change in the ¯ow structure that Kim
and Ro have not mentioned.

Although large discrepancies are found amongst the results
reported in the literature quoted in the reference section, the
present results are not fully opposite. Only two types of steady
multicellular ¯ows were indeed reported in these works: the
¯ow patterns are systematically characterized by the direction
of velocity at h� p, upward or downward, or by the direction
of the thermal plume, reversed or not. On the other hand, it is
not the number of cells, which characterizes the nature of the
¯ow as it was often assumed. The di�erent numbers of cells as
well as the discrepancies in Rac (Powe et al., 1969; Rao et al.,
1985; Kim and Ro, 1994; Cheddadi et al., 1992) are probably
due to uses of inappropriate convergence criteria and/or coarse
grid resolutions (Fant et al., 1989; Kim and Ro, 1994).

A ®nal comment regarding the recent paper by Yoo (1998),
which pertains to the subject of the present work is in order.
Yoo discretized the streamfunction-vorticity formulation of
the Navier±Stokes equations using very ®ne meshes, i.e.
(15 ´ 257) or (25 ´ 129) within half-annulus. For a radius ratio
R� 1.167 he found the same behavior of the thermal cells as in
the present study. For a low Prandtl number ¯uid (Pr� 0.3),

Fig. 8. Bifurcation diagrams of the mean Nusselt number for various radius ratios (Pr� 0.71).
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he determined a transitional value of the Rayleigh number
equal to 2100. The present Eq. (10) gives RaT� 1894 for this
radius ratio but for Pr� 0.7. This shows that there is only a
weak e�ect of the Prandtl number on the onset of the steady
multicellular motion at the annulus top. Moreover, the same
kind of instabilities, thermal in their origin, were found to
appear ®rst. Two branches were also determined which are
characterized by the direction of the ¯uid in the centered plane
(ascending or descending). He remarked that once the thermal
plume on the top has been established, its orientation (down-
ward or upward) is not varied by increasing or decreasing Ra.

3.2. Flow patterns at moderate Rayleigh numbers

A second type of instability, hydrodynamic in its origin,
was simulated at moderate Rayleigh numbers, i.e. for Ra
values less than 50 000. All the subsequent calculations were
carried out on the whole annulus (06 h6 2p) using a uniform
31 ´ 240 grid system.

Fig. 9 shows the streamlines for various Ra and for a radius
ratio R� 1.14. At Ra� 9000 instabilities are still thermal in
origin. One may observe four stationary counter-rotating cells
at the upper part of the annulus. When increasing Ra up to
15 000, oscillatory ¯ow patterns appear within the main cres-
cent-shaped cells. These hydrodynamic instabilities take the
form of longitudinal rolls often observed in a vertical slot. As a
consequence, the cells at the upper part of the annulus start to
oscillate, changing their sizes alternatively and regularly. Low
amplitude characterizes this periodic motion so that the dis-
symmetry of the ¯ow structure is weak. At Ra� 25 000, a
chaotic motion appears. By increasing further Ra, the rolls
within the main cells merge and a reverse transition to a uni-
cellular main cell-structure is obtained at Ra� 30 000 (Fig. 9d).
The oscillatory behavior of the upper cells was already men-
tioned by Rao et al. (1985). In their study on ¯ows in annulus
®lled with very low Prandtl number, Fant et al. (1989,1990)
found also that ampli®cation of hydrodynamic instabilities
leads to roll formations within the main cells. Contrarily to
what has been found for a vertical slot in which the hydro-
dynamic cells are stationary, the present calculations show that
the secondary instabilities are unsteady, the internal cells

within the vertical portion of the annulus drifting downward.
This phenomenon can be compared to the unsteadiness which
appears in the slot when surface radiation is accounted for
(Desrayaud and Lauriat, 1988) or in the vertical annulus (Le
Qu�er�e and P�echeux, 1989). In both cases, the loss of symmetry
of the base ¯ow is the reason for unsteady instabilities.

Once again, our results are in close agreement with those of
Yoo (1998) who has shown for Pr� 0.3 that secondary hy-
drodynamic instabilities occur in the vertical section of the
annulus, rendering the ¯ow unsteady with the development of
multiple oscillatory cells having a strong time periodic motion
and drifting downward. On the other hand, the shape and
strength of the thermal cells at the annulus top were almost
unvarying.

4. Conclusions

A literature survey of natural convection within horizontal
annuli of small radius ratios indicates the presence of multi-
plicity of solutions. On the other hand, the results discussed in
the present paper reveal the existence of an imperfect bifur-
cation: there are only two stable branches of bifurcation, and
thus only two modes of solutions. The mechanisms of for-
mation or merging of the cells within the upper part of the
annulus are indeed the same on the two branches, the number
of cells depending mainly on the radius ratio and the Rayleigh
number. For a ®xed supercritical value of the Rayleigh num-
ber, the number of cells increases as the radius ratio decreases.
When R ® 1 the number of cell tends toward in®nity and the
classical Rayleigh±B�enard problem characterized by a pitch-
fork bifurcation is recovered.

The reason for the large discrepancies in critical values and
hysteresis phenomena found in the literature is probably due
to the use of inappropriate criteria for stopping the calcula-
tions, too coarse grids or too large time steps.

The multicellular ¯ows calculated in the present study un-
dergo an unsteady secondary instability when increasing the
Rayleigh number provided the radius ratio is small enough
(for example R� 1.14). At moderate Ra, the resulting periodic
¯ow is composed of cellular patterns within the base ¯ow. This
second type of instability is hydrodynamic in its origin. Like in
air-®lled vertical slots, a reverse transition to unicellular base
¯ow is observed when increasing the Rayleigh number.
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